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INTRODUCTION

LQG has identi�ed what could be the fundamental kinematicaldegrees of freedom of
quantum geometry and many mathematical tools to deal with them

group �eld theoriesare combinatorially non-local �eld theories on (Lie) groups or
algebras which

bring the fundamental degrees of freedom of quantum geometry, as identi�ed bycanonical loop
quantum gravity
in the general framework ofmatrix/tensor models for simplicial quantum gravity

they de�ne (potentially) a quantum �eld theory (2nd quantization)
of spin networks
of simplicial geometry

thus an alternative de�nition of thecomplete dynamics of geometry (and topology) of
quantum space, from the microscopic, pre-geometric, quantum regime to the macroscopic,
geometric, (semi-)classical one

that can now be studied using (almost) standard methods and ideas from quantum (and
statistical) �eld theory
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INTRODUCTION

GFT �eld(s) � = a 2nd quantized spinnet vertex or a 2nd quantized simplex

classical dynamicsS(� ) (and corresponding equations of motion)

quantum dynamicsZ =
R

[d� ] e� S( � )

quantum dynamics: perturbation theory around no-space vacuum� = 0:

Z =
Z

[d� ] e� S( � ) =
X

�

A(�)

� = possible interaction/evolution process of spin networks/simplices= cellular complex
of arbitrary topology and complexity

A(�) = spin foam model or, equivalently, simplicial gravity path integral
within this general framework, the tasks are then:

de�ne interestingmodels for quantum gravity, i.e. S( � ) and thusA(�)
understand quantum geometry (d.o.f.,symmetries, ...) in S( � ) and inA(�)
make sense of QFT: space of states,symmetries, statistics, observables, quantum (SD) eqns,
conserved quantities,....
make sense of QFT:combinatorial structure of Feynman diagrams� , sum over topologies,
perturbative renormalization
de�ne non-perturbative (quantum) dynamics (sum over diagrams, continuum/thermodynamic
limit, thermodynamic phases)
make contact with continuum semi-classical gravity and extract (new) physics
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COLORED GFT FOR 3D EUCLIDEAN GRAVITY

4 �elds ' ` for ` = 1; ::; 4 function on SO(3) 
 3, subject to gauge invariance:

8h 2 SO(3); ' ` (hg1; hg2; hg3) = ' ` (g1; g2; g3)

actionS[' ` ] = Skin[' ` ] + Sint['` ]:

Skin[' ` ] =
Z

[dgi ]3
4X

` = 1

' ` (g1; g2; g3)' ` (g1; g2:g3);

Sint[' ` ] = �
Z

[dgi ]6 ' 1(g1; g2; g3)' 2(g3; g4; g5)' 3(g5; g2; g6)' 4(g6; g4; g1)

+ �
Z

[dgi ]6 ' 4(g1; g4; g6)' 3(g6; g2; g5)' 2(g5; g4; g3)' 1(g3; g2; g1)

spin network representation obtained by Peter-Weyl expansion

' ` (g1; g2; g3) =
X

Cj1; j2; j3
m1;m2;m3 � j1; j2; j3

`; n1;n2;n3
Dj1

m1n1(g1)Dj2
m2n2(g2)Dj3

m3n3(g3)

�eld $ spin network vertex
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COLORED GFT FOR 3D EUCLIDEAN GRAVITY

non-commutative triad (�ux) representationwith continuous variablesx 2 su(2) � R3

(A. Baratin, DO, arXiv:1002.4723 [hep-th]), (A. Baratin, B. Dittrich, DO, J. Tambornino, arXiv:1004.3450 [hep-th])

use group Fourier transform of the �elds(E. Livine, L. Freidel, S. Majid, K. Noui, E. Joung, J. Mourad)

b' ` (x1; x2; x3) :=
Z

[dgi ]3 ' ` (g1; g2; g3) eg1(x1)eg2(x2)eg3(x3);

with plane-waves eg : su(2) � R3 ! U(1) (g= e�~n�~� andx= ~x � ~� ): eg(x) := eiTrxg;
non-commutative product dual to convolution product on thegroup:

(eg ? eg0)( x) := egg0(x);

gauge invariance condition becomes `closure constraint' for xi

\P . ' ` = bC?b' ` ; bC(x1; x2; x3) := � 0(x1+x2+x3) ; P . ' ` =
Z

[dh] ' ` (hg1; hg2; hg3)

with

� x(y) :=
Z

[dh] eh-1(x)eh(y)
Z

[d3y] (� x ? f )( y) = f (x)

xi = closed edges vectors of a triangle inR3 ) �eld $ geometric simplex
because of duality between group convolution and?-product, GFT action in triad variables
maintains same combinatorial structure
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COLORED GFT FOR 3D EUCLIDEAN GRAVITY

Feynman diagrams� built from 3-stranded propagators re-routed at interaction vertices,
and are dual to simplicial complexes
Feynman amplitudesA � equivalently written in group, representation or algebra variables

A � =
Z Y

l

dhl

Y

f

�
�
Hf (hl )

�
=

Z Y

l

dhl

Y

f

�
� �!Y

l2 @f
hl

�
=

=
X

f jeg

Y

e

dje

Y

�

�
j�1 j�2 j�3
j�4 j�5 j�6

�
=

Z Y

l

[dhl ]
Y

e

[d3xe] ei
P

e Tr xeHe e $ f

construction extended with same data to simplicial complexes with boundary
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SUMMARY SO FAR

GFT de�nes quantum dynamics for spin networks or simplices
full dynamics de�ned by sum over all gluings of colored tetrahedra� , respecting the
coloring and the boundary data, (thus arbitrary topological manifolds as well as
pseudo-manifolds) with amplitudeA �

spin foam amplitudes are exactly dual to (non-commutative)simplicial gravity path
integrals
non-commutative representation corresponds to quantization by Du�o map for phase
spacesT � G ! �ux representation of LQG
role of non-commutative variables can be analyzed in simpler case: particle on SO(3) (DO,

M. Raasakka, arXiv:1103.2098 [hep-th]):
group Fourier transform gives natural momentum representation
dynamics expressed by non-commutative phase space path integral
� -product encodes correct quantum corrections
semi-classical analysis of dynamical amplitudes simpli�ed in non-commutative variables

triad representation of dynamics brings geometry to the forefront, so useful for:
analyze gravitationalsymmetriesin GFT (ad spin foams)! diffeomorphism symmetry
construct models for 4d gravity based on BF theory

classical constraints on bivectors and connection straightforward to quantize as non-commutative delta
functions insertions in GFT action
insertions become simply constraints in BF simplicial pathintegral with clear geometric meaning
translation as constraints on quantum states achieved by direct change of representation
V. Bonzom, E. Livine, arXiv:0812.3456 [gr-qc]; V. Bonzom, arXiv:0903.0267 [gr-qc],arXiv:0905.1501 [gr-qc]; A. Baratin, DO,
arXiv:1002.4723 [hep-th]; A. Baratin, DO, to appear
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DIFFEOMORPHISMS IN DISCRETE(QUANTUM) GRAVITY

understanding implementation diffeomorphism symmetry crucial for any QG model
constrain fundamental quantum dynamics and emergent classical one
guidance in extraction of effective gravitational dynamics

QG models based on discrete structures! continuum diffeo symmetry generically broken

need to identify discrete (exact or approximate) symmetry on `pre-geometric' data
extensive studies in Regge calculusB. Dittrich, arXiv:0810.3594 [gr-qc]; B. Bahr, B. Dittrich, arXiv:0905.1670 [gr-qc]:

diffeomorphisms! translations of vertices of triangulation (in local �at embedding inRd)
invariance of Regge action exact in 3d without cosmologicalconstant (�at space)
invariance only approximate in 4d! recovered in continuum limit
invariance of action related to Bianchi identities at vertices of triangulation

closest analysis to our setting: 3d Ponzano-Regge spin foammodel
(actually, simplicial BF path integral)L. Freidel, D. Louapre, gr-qc/0212001
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DISCRETE DIFFEOMORPHISMS IN SIMPLICIAL3D BF PATH INTEGRAL

closest analysis to our setting: 3d spin foam models (actually, simplicial BF path integral):
GFT amplitudeA � , for triangulation� , for discrete triadf xege2 � and connectionf hlgl2 � :

Z� =
Z Y

l

dhl

Y

e

d3xe eiS� ( xe; hl ) =
Z Y

l

dhl

Y

e

d3xe ei
P

e Tr( xeHe( hl )) ;

S� (xe; hl) = discrete version ofS(B; A)=
R

Tr B ^ F(A) , for triadB and connectionA
SO(3) gauge invariance+ translation symmetry forsu(2) -valued scalarsX and� (equivalent
on-shell to diffeos):

B ! B + dA�
A ! A

�
�
�
�

B ! [B; X]
A ! A + dX + [ A; X]; F ! F + [ F; X];

discrete symmetry of actionS� (xe; hl ) due to discrete Bianchi identity at verticesv 2 � :
consider `link'Lv of v: link l bounding facesfe dual to the edgese � v meeting atv (in GFT:
boundary surface of `bubble')
if � is triangulated manifold,Lv is a 2-sphere8v

for any ordering of edgese � v,
���! Q

e� v(ke
v)

� 1 He ke
v = 1, for someke

v := ke
v(hl ) 2 G ( =

parallel transport between a �xed vertex inLv to the reference vertex offe from which the
holonomyHe computed)
in terms of the projectionsPe := TrHe~� , and for (complicated) functionsUv

e(Pe) and
 v
e(Pe) :

X

e� v

(ke
v)

� 1(Uv
ePe + [
 v

e; Pe]) ke
v = 0; (1)

invariance of discrete action underxe 7! xe + Uv
e" e

v � [
 v
e; " e

v]; with " e
v( � v) = kv

e� v(kv
e) � 1

for translation vectors� v 2 su(2) in frame ofLv and" e
v for same translation vector in frame offe

need to identify same transformations, symmetry and identity in GFT formulation
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BASICS ONDSO(3) ACTION ON FUNCTIONS ONSO(3) AND THEIR DUAL

Drinfeld doubleDSO(3)= C(SO(3)) o C SO(3) (CSO(3) = group algebra,C(SO(3)) =
algebra of functions) is a deformation of 3d Euclidean Poincaré group ISO(3)
representation on functions on the groupC(SO(3)) : rotations act by adjoint action on the
variable and translations act by multiplication:

� (g) 7! � (� � 1 . g) := � (� � 1g�) ; � (g) 7! f (g)� (g); � 2 C(SO(3))

in particular, one can considerf" (g) = eg(" ), labelled by" 2 su(2) � R3

upon group Fourier transform this corresponds to dual action b� (x) 7! b� (x + " )
analogue of Poincaré transformations on functions on �at space, here replaced bysu(2),
with momentum space replaced by SO(3)
deformed action on tensor product of �elds, due to non-trivial co-product onC(SO(3)) ,
4 f (g1 
 g2) = f( 1) (g1)f( 2) (g2) = f (g1g2); 8f 2 C(SO(3)) :

� 1(g1)� 2(g2) 7! 4 f (g1 
 g2)� 1(g1)� 2(g2)

using eg1g2(" )= ( eg1 ? eg2)( " ), one can check that

b� 1(x1) b� 2(x2) 7! b� 1(x1 + " ) ?" b� 2(x2 + " )

need to upgrade products of functions to tensor products! introduce braiding map
standard GFT corresponds totrivial braiding map:

B12 : C(SO(3)) 
 C (SO(3)) ! C (SO(3)) 
 C (SO(3))

� (g1) 
 � (g2) 7! � (g2) 
 � (g1)
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GFT SYMMETRIES - A. BARATIN , F. GIRELLI , DO, ARX IV:1101.0590
[HEP-TH]

symmetries of GFT model for 3d Euclidean gravity= subset ofDSO(3) 
 4, one for each
vertex of a tetrahedron (GFT interaction, number of �eld `colors')
available symmetry transformations restricted by gauge covariance/closureP )=C:
P . (T . ' ` ) = T . (P . ' ` )
rotational symmetry:

' ` (g1; g2; g3) 7! ' ` (� � 1
1;` . g1; � � 1

2;` . g2 � � 1
3;` . g3) , restricted to single rotation� ` := �

! invariance under local changes of frame in each tetrahedronand in each triangle
translation (diffeo) symmetry:

transformations generated by foursu(2) -translation parameters" v, one per vertex of tetrahedron
take portion of GFT interaction relative to vertex, e.g.,v3, obtained by removing strands of color 3

translation ofv3 generated by" 3 2 su(2) acts non-trivially only on strands of vertex graph
in metric representation, it shiftsx`6= 3

i by � " 3 according to orientation:

x`
i 7! x`

i + " 3 if i outgoing x`
i 7! x`

i � " 3 if i incoming:
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GFT SYMMETRIES - TRANSLATIONS/DIFFEOMORPHISMS(A. BARATIN , F. GIRELLI , DO,

ARX IV:1101.0590 [HEP-TH])

T" 3 . b' 1(x1; x2; x3) := F " 3 b' 1(x1 � " 3; x2; x3 + " 3)

T" 3 . b' 2(x3; x4; x5) := F " 3 b' 2(x3 � " 3; x4 + " 3; x5)

T" 3 . b' 4(x6; x4; x1) := F " 3 b' 4(x6; x4 � " 3; x1 + " 3)

T" 3 . b' 3(x5; x2; x6) := b' 3(x5; x2; x6)

in the group representation:

T" 3 . ' 1(g1; g2; g3) := eg-1
1 g3

(" 3) ' 1(g1; g2; g3)

T" 3 . ' 2(g3; g4; g5) := eg-1
3 g4

(" 3) ' 2(g3; g4; g5)

T" 3 . ' 4(g6; g4; g1) := eg-1
4 g1

(" 3) ' 4(g6; g4; g1)

T" 3 . ' 3(g5; g2; g6) := ' 3(g5; g2; g6)

transformation extended to complex conjugate �elds' ` usingeg(" ) = eg-1(" ).
geometric meaning of transformation is manifest: when translanting a vertex, one
translates the edge vectors sharing this vertex, taking into account orientation
gauge covariance ofT is manifest: the shift of edge-variables preserves the closure of
each triangle; the argumentsg� 1

j gk of the plane-waves are gauge invariant
these transformations leave GFT action (more: the integrands) invariant
symmetry isreducible: �elds transform trivially under global translation of four vertices
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INVARIANCE OF GFT VERTEX AND ITS QUANTUM GEOMETRY (A. BARATIN , F. GIRELLI ,

DO, ARX IV:1101.0590 [HEP-TH])

non-commutative triad representation
vertex function given by:

V(x`
i ; x` 0

i ) =
Z 4Y

` = 1

[dh` ]
6Y

i= 1

( �
� x`

i
? e

h` h� 1
` 0

)( x` 0

i )

�xing ordering of variables to that de�ned by interaction polynomials, this is lifted to a tensor
product inC(SO(3)) 
 12 invariant under the (non-commutative) translations

the functionV(x`
i ; x` 0

i ) imposes the variablesx`
i , interpreted as edge-vectors in different frames,

to match the metric of Euclidean tetrahedron.
symmetry expressesinvariance of the matching condition under a translation ofeach of the
verticesin an embedding of this tetrahedron inR3

group representation
vertex function is:

V(g`
i ; g` 0

i ) =
Z 4Y

` = 1

dh`

6Y

i= 1

� (( g`
i ) � 1h` h� 1

` 0 g` 0

i )

its invariance under translations of the vertexv3 means that, for all� 3 2 su(2) :

eGv3
( " 3)V(g`

i ; g` 0

i ) = V(g`
i ; g` 0

i )

where
Gv3 = ( g1

1) � 1g1
3(g2

3) � 1g2
4(g4

4) � 1g4
1

translation invariance re�ects conservation ruleGv3 = 1
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INVARIANCE OF GFT VERTEX AND ITS QUANTUM GEOMETRY

(...group representation, continued...)
the group �eld variablesg`

i encode boundary holonomies along paths connecting the center of
each trianglè to its edges.! Gv3 is the holonomy along a loop circling the vertexv3 of the
tetrahedron.
symmetry under translation of each vertex saysboundary connection is�at ! Hamiltonian and
vector constraints, i.e. canonical counterpart of diffeomorphisms! constraint on tetrahedral
wave-function constructed from the GFT �eld

spin representation
the vertex function takes the form of SO(3) 6j-symbols:

X

f m`
i g

Y

`

i`
m`

i
V

j i
m`

i n`
i

=
Y

i

�
n`
i ; � n` 0

i
=

Y

i

�
n`
i ; � n` 0

i

�
j1 j2 j3
j4 j5 j6

�
(2)

the�atness constraint (WdW equation) on boundary connection becomes algebraic (recursion)
identity for 6j-symbols!
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INVARIANCE OF GFT VERTEX AND ITS QUANTUM GEOMETRY

(...spin representation, continued...)
act on vertex with translation" 3, with b� j=

R
dg� j (g)eg( " )

X

f m`
i g

Y

`

i`
m`

i
Vj i

m`
i n`

i
=

X

ki ; j

dk1dk3dk4dj b�
j ( " 3) =

=
X

ki ; j

dk1dk3dk4dj b�
j ( " 3)

�
j1 j2 j3
j k1 k3

� �
j1 j5 j4
j k4 k1

� �
j3 j6 j4
j k3 k4

� �
k1 k3 j2
k4 j5 j6

�

which implies8" :
�

j1 j2 j3
j4 j5 j6

�
=

=
X

ki ; j

dk1dk3dk4dj b�
j ( " )

�
j1 j2 j3
j k1 k3

� �
j1 j5 j4
j k4 k1

� �
j3 j6 j4
j k3 k4

� �
k1 k3 j2
k4 j5 j6

�

`algebraic WdW equation'on tetrahedral state
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GFT TRANSFORMATIONS AT SIMPLICIAL LEVEL (GFT AMPLITUDES)

we saw that discrete actioneiS� ( xe;hl ) := ei
P

e TrxeHe (for manifold� ) is invariant under

xe 7! xe + Uv
e" e

v � [
 v
e; " e

v]; with " e
v(� v) = kv

e� v(kv
e) � 1

for vectors� v 2 su(2) in frame ofLv and" e
v(� v) for same translation in frame offe

thanks to Bianchi identity, in terms ofPe := TrHe~� , and for functionsUv
e(Pe) and
 v

e(Pe):
X

e� v

(ke
v) � 1(Uv

ePe + [
 v
e; Pe])ke

v = 0; (3)

this is the GFT translation symmetry w.r.t. the non-commutative translations
�x xe for all edgesewhich do not touch vertexv ! function of remainingnv variables insu(2)
choosing an ordering, one can lift this function to an element of tensor productC(SO(3)) 
 e� v

of nv copies ofC(SO(3))
act with non-commutative translation

xe ! xe + " e
v( � v) ; " e

v( � v) = kv
e� v(kv

e) � 1 (4)

(kv
e = parallel transport from �xed vertex inLv to reference vertex of facefe)

function gets transformed into a?-product of functions of� v:
Y

e

eiTrxeHe 7!
�!
F

e� v

Y

e

eiTr( xe+ " e
v) He( � v)

suchnon-commutative translation acts on action term by multiplication by plane wave:

eiTr
h
� v

� �!Q
e� v( ke

v) � 1 He ke
v

�i

= 1;

which is trivial due to the Bianchi identity
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BRAIDED DIAGRAMS, ALGEBRAIC DERIVATION , N-POINT FUNCTIONS

given GFT symmetry, one would like toderive Bianchi identity as above from GFT
amplitudes in purely algebraic way

involves writing GFT amplitudes in the framework ofbraided quantum �eld theoryand
separate strands associated to bubbles (Bianchi id) into loops (discrete action):

requires a general rule (braiding) for crossing and swapping strands in a bubble diagram

we have been able to identify such rule only in one simple case

we expect it to exist forall spherical diagrams! Bianchi identities for manifold�

we expect Bianchi identity to be broken (or twisted) for non-manifold diagrams

a general treatment requires a better de�nition ofbraiding at GFT level, and probably the
introduction of non trivial braiding map among GFT �elds! braided statistics

trivial braiding for GFT �eldsdoes notintertwine the GFT diffeomorphism symmetry!
symmetry is broken at full quantum level! GFT n-point functions arenot covariant
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GFT IN VERTEX VARIABLES (BARATIN -GIRELLI -DO, 1101.0590 [HEP-TH]), (S. CARROZZA, DO, 1104.5158 [HEP-TH])

analysis of diffeos at GFT level suggests that:
fundamental degrees of freedom of 3d colored GFT can be associated to vertices
if one wants tode�ne �elds in terms of representations of symmetry (quantum) group, they have
to be expressed in vertex variables, where this group acts naturally

the step from edge to vertex variables can be made (for �eld
' (g1; g2; g3) = ' (hg1; hg2; hg3), andGu := g-1

2 g1, Gv := g-1
1 g3, Gw := g-1

3 g2):

~ ` (u; v; w) =
Z

dGvdGw' ` (G-1
v ; Gw; 1l)e( GvGw) -1(u)eGv(v)eGw(w)

=
Z

dGudGvdGw� (GuGvGw)' ` (G-1
v ; Gw; 1l)eGu(u)eGv(v)eGw(w)

=
Z

dGudGvdGw� (GuGvGw) ` (Gu; Gv; Gw)eGu(u)eGv(v)eGw(w)

=
Z

dGudGvdGw

Z
d" F "  ` (Gu; Gv; Gw)eGu(u + " )eGv(v + " )eGw(w + " )

=
Z

d" F " b ` (u + "; v + "; w + " ):

 ` (g-1
2 g1; g-1

1 g3; g-1
3 g2) � ' ` (g1; g2; g3)

triangle inR3 $ three edge vectors that close$ three positions of vertices up to
translation
GFT diffeo transformations now act naturally on vertex variables
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GFT IN VERTEX VARIABLES - ACTION

can rewrite colored GFT action as:

Skin[ ~ ] =
X

`

Z
[d3vi ]2 ~ ` (v1; v2; v3) ? ~ ` (v1; v2; v3) ;

Sint[ ~ ] = �
Z

[d3vi ]3 ~ 1(v2; v3; v4) ? ~ 2(v4; v3; v1) ? ~ 3(v4; v1; v2) ? ~ 4(v1; v3; v2) + c:c:

or also:

S[ ] =
X

l

Z
[

3Y

i= 1

dGi

3Y

i= 1

d~Gi ]K (Gi ; ~Gi ) ` (G1; G2; G3) ` ( ~G1; ~G2; ~G3)

+ �
Z

[
Y

` 6= ` 0

dGl
l0]V(Gl

l0) 234
1  431

2  412
3  132

4 + c:c:

K (Gi ; ~Gi ) = � (G1G2G3)� (G1 ~G-1
1 )� (G2 ~G-1

2 )� (G3 ~G-1
3 );

V(Gl
l0) = � (G1

2G1
3G1

4)� (G2
4G2

3G2
1)� (G3

4G3
1G3

2)� (G4
1G4

3G4
2)

� (G4
2G3

2G1
2)� (G4

3G1
3G2

3)� (G1
4G3

4G2
4)

` = 2

` = 1

2 3 4

` = 3

412

4
3
1

` = 4
1
3
2

this corresponds to the interactions of four non-commutative � 3 QFTs onsu(2)
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GFT IN VERTEX VARIABLES - AMPLITUDES (S. CARROZZA, DO, ARX IV:1104.5158 [HEP-TH])

evaluation of Feynman amplitudes: cut-off:� � (G), rescaling of �elds and coupling
different combinatorial structure from usual GFT Feynman diagrams:

subgraph of color̀ is graph of non-commutative� 3 scalar QFT onsu(2)
dual to triangulation of boundary of bubble around vertex ofcolor ` , encoding its topology
overall amplitude:� 3 graphs encoding structure of bubbles, glued through propagators

`0= 4

1

3

1

3

24 4

`0= 1

`0= 2 `0= 3

quantum amplitude is:

A � /
Z

[dG]
3N

2

0

@
Y

b2B `

[� � (1l)]2� 2gb�j Vbj
Y

v2 Vb

� �

0

@
��! Y

f 24 b
v

(Gf
v) � f

v

1

A

1

A

0

@
Y

f 2F `

� �

0

@
�!Y

v2 f

Gf
v

1

A

1

A

factorized in `bubbles plus gluing'! convenient for analyzing structure of divergences
example of result: optimal bounds proving suppression of pseudo-manifolds:

A � � (� � )
N
2 [� � (1l)]2� 2

P
b2B `

gb
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BRAIDING AND BRAIDED STATISTICS IN GFT -
- A. BARATIN , S. CARROZZA, F. GIRELLI , DO, M. RAASAKKA , TO APPEAR

because GFT diffeos act naturally on vertex variables, these are also convenient for
studying the issue of braiding

change coloring notation: ` (g1; g2; g3) !  c1c2c3(g1; g2; g3) with
` 6= c1; c2; c3 2 f 1; 2; 3; 4g

translations act as:

T̂c(� ) .  c1c2c3(g1; g2; g3) =
�

egi (� ) c1c2c3(g1; g2; g3) , if ci = c;
 c1c2c3 (g1; g2; g3) , otherwise.

want to �nd braiding mapB among GFT �elds that intertwine GFT translations:
B � �( T̂c(� )) = �( T̂c(� )) � B with co-product:�( T̂c(� )) = T̂c(� ) ? T̂c(� )

the braiding mapB that satisfy this intertwining property is given by the general rule:

B
�

 ci cj ck(gi ; gj ; gk) c0
i c0

j c0
k
(hi ; hj ; hk)

�
=  c0

i c0
j c0

k
(gjhig

� 1
j ; hj ; gihkg� 1

i ) ci cj ck (gi ; gj ; gk), if ci = c0
k; cj = c0

i ;

for example:

B
�
 421(g1; g2; g3) 
  123(h1; h2; h3)

�
=  123(g

� 1
3 h1g3; g2h2g� 1

2 ; h3) 
  421(g1; g2; g3)
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BRAIDING AND BRAIDED STATISTICS IN GFT -
- A. BARATIN , S. CARROZZA, F. GIRELLI , DO, M. RAASAKKA , TO APPEAR

from this,one can also deduce (more complicated) braiding for �elds' in edge variables

the above braiding is the onenaturally inherited from the representation theory ofDSO(3)
this braiding intertwines the GFT translation/diffeo symmetry

! n-point function forbraided GFTare covariant at full quantum level
! �elds in GFT interaction can now be written as tensor products in any order, then related by
braiding map

one can go beyond:
interpret each �eld (in vertex variables) as a tensor product of three representations ofD SO(3)
�nd a canonical way of writing the GFT interaction in terms oftensor products of such
representations
identify a braiding map among them that intertwines the diffeo symmetry and gives also the
braiding of GFT �elds

stage is now set for:
obtain Bianchi identities from invariance of GFT amplitudes under GFT diffeos in purely
algebraic language
study Ward identities on n-point functions following from GFT diffeo invariance at quantum level
construct Fock space for GFT states, thus for LQG spin networks in 2nd quantization, and rewrite
dynamics in such formalism
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CONCLUSIONS AND OUTLOOK

Conclusions
GFTs de�ne a tentative but complete quantum dynamics for spin networks or simplices
just as LQG, they can be written inthree main representations: non-commutative
triad/�ux, connection, spin network
spin foam amplitudes are dual to (non-commutative) simplicial gravity path integrals
in this representation, construction of 4d gravity model isgeometrically transparent
one can identify theGFT analogue of simplicial diffeomorphism transformations
this GFT symmetry makes possible torelatenicely the consequences of diffeo invariance
in quantum geometry:simplicial vertex translations, WdW equation on cylindrical
functions, algebraic recursion relations for spin foam amplitudes
one also elucidates the GFT origin and role ofBianchi identities
GFT diffeos are quantum group transformations, so suggest a role of braiding and braided
statistics in GFT and quantum geometry
the appropriate braiding can be identi�ed

Outlook
clarify further algebraic nature of Bianchi identities
role of braiding in GFT amplitudes, dependence on topology of diagrams,scaling limits
Ward identitiesand conserved quantities following from GFT diffeo symmetry
GFT Schwinger-Dyson equations(where all the quantum dynamics is contained)
Fock space of GFT states (and of LQG), reformulate dynamics in 2nd quantization
extend analysis to4d gravity models(broken diffeos, recovering of diffeos, braiding, etc)
.......and much much more.....
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Thank you for your attention!
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