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INTRODUCTION

INTRODUCTION

m LQG has identi ed what could be the fundamental kinematizgrees of freedom of
guantum geometry and many mathematical tools to deal wéttmth

m group eld theoriesare combinatorially non-local eld theories on (Lie) graupr
algebras which
m bring the fundamental degrees of freedom of quantum gegnaetidenti ed bycanonical loop
quantum gravity
m in the general framework ohatrix/tensor models for simplicial quantum gravity
they de ne (potentially) a quantum eld theory (2nd quasation)
m of spin networks
m of simplicial geometry
= thus an alternative de nition of theomplete dynamics of geometry (and topology) of
guantum spacdrom the microscopic, pre-geometric, quantum regime éontlacroscopic,
geometric, (semi-)classical one

= that can now be studied using (almost) standard methodslaad from quantum (and
statistical) eld theory
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INTRODUCTION

INTRODUCTION

GFT eld(s) = a2nd quantized spinnet vertex or a 2nd quantized simplex
classical dynamic§( ) (5nd corresponding equations of motion)
quantum dynamicg = [d Je X )
guantum dynamics: perturbation theory around no-spaaeuwvac = O:
z X
z= [dle )= A)

= possible interaction/evolution process of spin netwaikgplices= cellular complex
of arbitrary topology and complexity

m A() = spin foam model or, equivalently, simplicial gravity pattiegral
= within this general framework, the tasks are then:

m de ne interestingnodels for quantum gravify.e. § ) and thusA()

m understand quantum geometry (d.csfimmetries...) in§ ) and inA()

m make sense of QFT: space of stamsnmetries, statisticebservables, quantum (SD) eqns,
conserved quantities,....

make sense of QFEombinatorial structure of Feynman diagramssum over topologigs
perturbative renormalization

de ne non-perturbative (quantum) dynamics (sum over @iagg, continuum/thermodynamic
limit, thermodynamic phases)

make contact with continuum semi-classical gravity andaett(new) physics
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COLORED GFT FOR 3D EUCLIDEAN GRAVITY

1;::; 4 function on S@3) 3, subject to gauge invariance:

m 4 elds' - for” =

8h2 sQ(3); "~ (hgy; hap; hgs) = '~ (01 92; 93)
m actiony' -] = San[' “]1+ Sml” It
Z X4
Sinl *1= [dgl®* ' (9102 03) (91 02:0s);
=1
z
Smt[' -] = [dgil®" 1(91; 02; 93)" 2(03; 04; Os)' 3(Us; U2; U6)" 4(Ts; Ga; )

z
+  [dgi]®2(91; 94; 96) 3(Ts: U2; 95) 2(0s; Ga; O3) " 1(Ts; G2; O1)

m spin network representation obtained by Peter-Weyl expans

Chistingms iy g Difuny (91) Dffgn, (92) Difons (G3)

X
" (011 02:03) =
m eld $ spin network vertex
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non-commutative triad ( ux) representatiovith continuous variables 2 su(2) R3
(A. Baratin, DO, arXiv:1002.4723 [hep-th]), (A. Baratin, Bittrich, DO, J. Tambornino, arXiv:1004.3450 [hep-th])
use group Fourier transform of the el@Stivine, L. Freidel, s. Majid, K. Noui, E. Joung, J. Moujad

z

b (% %2; %) = [dGi]®" - (915 G2 Os) €, (X1) €y, (X2) €55 (Xa);

with plane-wavesg: su(2) R3! U(1) (g= €™~ andx=% ~): g(x) := €77,
non-commutative product dual to convolution product ongteup:

(€9 7 €0)(¥):= e();
gauge invariance condition becomes “closure constrang; f

p.ro= Q?’b‘; Q(xl;xz;x3) = o(xetxgtxs) ;. P .t~ = [dh]" - (hgr; hgp; hgs)

with
z VA
x(y) = [dhl e 1(X)en(y) [y ( x2f)(y) = f(¥)

m X, = closed edges vectors of atriangleRA) eld $ geometric simplex
because of duality between group convolution @mtoduct, GFT action in triad variables
maintains same combinatorial structure
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123 625
¢ =3

m Feynman diagrams built from 3-stranded propagators re-routed at interactiertices,
and are dual to simplicial complexes
m Feynman amplitude8 equivalently written in group, representation or algelagables
z

Y YooYy o
A= dh Hi(h) = dh ba =
| f | 7 f
XY Y Yooy P
= g, b= Ty [Bx]e T e f
fieg © la Js s I e

m construction extended with same data to simplicial comgsexith boundary
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SUMMARY SO FAR

GFT de nes quantum dynamics for spin networks or simplices

= full dynamics de ned by sum over all gluings of colored téteara , respecting the

coloring and the boundary data, (thus arbitrary topoldgitanifolds as well as
pseudo-manifolds) with amplitudé

spin foam amplitudes are exactly dual to (hon-commutasugplicial gravity path
integrals

non-commutative representation corresponds to quaistizhy Du o map for phase
spacesI G! uxrepresentation of LQG
role of non-commutative variables can be analyzed in simgalse: particle on S@) (o,
M. Raasakka, arXiv:1103.2098 [hep-th])

m group Fourier transform gives natural momentum represienta

m dynamics expressed by non-commutative phase space pagiaht

m  -product encodes correct quantum corrections

m semi-classical analysis of dynamical amplitudes simpliie non-commutative variables
triad representation of dynamics brings geometry to theffont, so useful for:

m analyze gravitationalymmetriesn GFT (ad spin foams)) diffeomorphism symmetry

m construct models for 4d gravity based on BF theory

m classical constraints on bivectors and connection stifaighard to quantize as non-commutative delta
functions insertions in GFT action

m insertions become simply constraints in BF simplicial patkgral with clear geometric meaning

m translation as constraints on quantum states achievedgt @hange of representation

B V.Bonzom, E. Livine, arXiv:0812.3456 [gr-qc]; V. BonzonrXav:0903.0267 [gr-gc],arXiv:0905.1501 [gr-qc]; A. Baia, DO,
arXiv:1002.4723 [hep-th]; A. Baratin, DO, to appear
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DIFFEOMORPHISMS INGFT

DIFFEOMORPHISMS IN DISCRETE(QUANTUM) GRAVITY

m understanding implementation diffeomorphism symmetugied for any QG model

m constrain fundamental quantum dynamics and emergenicdhsse
m guidance in extraction of effective gravitational dynasnic

QG models based on discrete structdrezontinuum diffeo symmetry generically broken
need to identify discrete (exact or approximate) symmetrypoe-geometric' data
m extensive studies in Regge calculusitrich, arxiv:0810.3594 [gr-qc]; B. Bahr, B. Dittrictarxiv:0905.1670 [gr-q¢]

m diffeomorphismd translations of vertices of triangulation (in local at eetiding ian)
m invariance of Regge action exact in 3d without cosmologioaistant ( at space)

m invariance only approximate in 4d recovered in continuum limit

m invariance of action related to Bianchi identities at \e&$ of triangulation

m closest analysis to our setting: 3d Ponzano-Regge spin foadel
(actually, simplicial BF path integral) rreidel, . Louapre, gr-qc/0212001
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DIFFEOMORPHISMS INGFT

DISCRETE DIFFEOMORPHISMS IN SIMPLICIAL3D BF PATH INTEGRAL

m closest analysis to our setting: 3d spin foam models (dgfsinplicial BF path integratl)
m GFT amplitudeA , for triangulation , for discre%e triad xegez  and connectioif higj2
, = dh Y Pre &5 Ceit) = Y dh Y P e TOeHe(h) .

| e | e

R
m S (X h) = discrete version o§(B; A)= TrB” F(A), for triad B and connectio
m SO(3) gauge invariance translation symmetry fosu (2)-valued scalar¥ and (equivalent
on-shell to diffeos):

B! B+ da B! [B;X]
Al A Al A+ dX+[AX]; F! F+[FX];

discrete symmetry of actio® (Xe; hy) due to discrete Bianchi identity at vertice®
consider “linkLy of v: link | bounding face dual to the edges v meeting aw (in GFT:
boundary surface of “bubble’)

if s triangulated manifold.\f is a 2-spher@v

u for any ordering of edges v, ~ , (k) 'Hek®= 1,forsome = ki(h) 2 G(=
parallel transport between a xed vertexlin to the reference vertex & from which the
holonomyHe computed)

m in terms of the projectionB. := TrHe~, and for (complicated) functioris{(Pe) and ¥(Pe):
() YUPe+[ GPDK =0 &)
e v
= invariance of discrete action under 7! xe+ UY"E [ %8 with"$( )= K W(K) !

for translation vectorsy 2 su(2) in frame ofLy and"s for same translation vector in frame fof
need to identify same transformations, symmetry and iteimiGFT formulation
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DIFFEOMORPHISMS INGFT

BAsics ONDSQ(3) ACTION ON FUNCTIONS ONSQ(3) AND THEIR DUAL

Drinfeld doubleD SQ(3)= C(SO(3)) o C SO(3) (CSQ(3) = group algebraC(SQ(3)) =
algebra of functions) is a deformation of 3d Euclidean Paigégroup ISQ3)
representation on functions on the gradQ(3)) : rotations act by adjoint action on the
variable and translations act by multiplication:

@7 ( *o= ( '9); (9) 7t f(9) (9);  2C(SA3)
in particular, one can considér(g) = ey("), labelled by" 2 su(2) R3
upon group Fourier transform this corresponds to dual adl) 7! P(x + ")
analogue of Poincaré transformations on functions onpaice, here replaced lsy(2),
with momentum space replaced by &P
deformed action on tensor product of elddue to non-trivial co-product o8(SQO(3)),

41(gr @)= fy(9fiy () = f(a192); 8f 2C(SA(I)):
1(91) 2(92) 7' 4 f(o1  92) 1(01) 2(92)
using &,q,(")=( €g; ? €,)("), one can check that
By (x1) Pa(xz) 7! By(xa+ ") 2 Byl + )

need to upgrade products of functions to tensor producistroduce braiding map
standard GFT correspondsttivial braiding map

Bi2: C(SQ(3)) C (SQ3)) !C (SA3) C (SO3)
(91) (@ 7' (92 (91)
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DIFFEOMORPHISMS INGFT

GFT SsYMMETRIES - A. BARATIN, F. GRELLI, DO, ARX1v:1101.0590
[HEP-TH]

m symmetries of GFT model for 3d Euclidean gravitysubset oD SQ(3) 4, one for each
vertex of a tetrahedron (GFT interaction, number of eldiazs’)
m available symmetry transformations restricted by gaugerance/closurd )=C:
P.(T.")=T.(P."")
m rotational symmetry:
B (00 7 (g . @ 4t gs), restricted to single rotation- 1=
m | invariance under local changes of frame in each tetraheaindrin each triangle

m translation (diffeo) symmetry
m transformations generated by faaur(2)-translation parametels, one per vertex of tetrahedron

m take portion of GFT interaction relative to vertex, evg,,obtained by removing strands of color 3

-
= - —

~ ~ =2
by ™~y

m translation ofv; generated by 3 2 su(2) acts non-trivially only on strands of vertex graph
m in metric representation, it shift§& s by "3 according to orientation:

x; 7! x; + "3 if i outgoing x| 7! x; "3 if i incoming
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DIFFEOMORPHISMS INGFT

GFT SYMMETRIES - TRANSLATIONS/DIFFEOMORPHISMS(a. Bara, . Grev, 0o,

ARXIV:1101.0590 fEP-TH])

Ty bi(xaixeixs) == Frybi(xa  "siXe;Xs+ "3)
Teg. ba(XgiXa;%s) = Fry'ba(xs  "sziXa+ "3X)
Ty DalXe;Xa;x) = FrybalXeixa "sixa+ "3)
Teg. b3(Xs;X2;%6) = 'D3(Xs; X2; X6)
= in the group representation:
Trg.' 1(01:Gi0s) = €51g("3) " 1(01:92: Ga)
Trg.' 2(98i0ai0s) = €51g,("3)" 2(0s:94: Gs)
Trg.' 4(9ei0ai91) = €51q,("3)" 4(06194:01)
Tg." 3(05:02:06) = ' 3(05; 02 O6)

= transformation extended to complex conjugate €fdsusinggg(") = ega(").

m geometric meaning of transformation is manifest: whensleating a vertex, one
translates the edge vectors sharing this vertex, takimgaotount orientation

m gauge covariance df is manifest: the shift of edge-variables preserves theuotosf
each triangle; the argumerds 1gk of the plane-waves are gauge invariant

m these transformations leave GFT action (more: the integainvariant

m symmetry isreducible elds transform trivially under global translation of fowertices

13/25



DIFFEOMORPHISMS INGFT

INVARIANCE OF GFT VERTEX AND ITS QUANTUM GEOMETRY (a. Baranin, F. GreLu,

DO, ARX1V:1101.0590 HEP-TH])

m non-commutative triad representation
m vertex function given by:
o % Yo .
V(1% )= ] (26, 10%)
. . N}
=1 i=1

m Xing ordering of variables to that de ned by interaction lgpaomials, this is lifted to a tensor

product inC(SQ(3)) 2 invariant under the (non-commutative) translations
m the functionV(x; ; >g ) imposes the variableé, interpreted as edge-vectors in different frames,

to match the metric of Euclidean tetrahedron.
m symmetry expressesvariance of the matching condition under a translatioraxth of the

verticesin an embedding of this tetrahedronfi

m group representation
m vertex function is:
SN A Y
V(gig )= dv (g) ‘hhg'g)
=1 i=1
m its invariance under translations of the verigmeans that, for allz3 2 su(2):
N <0 N ~0
ey, ("3)V(g:g )= V(g9 )
where 1. 1.1, 2 1.2, 4 1.4
Gy; =(91) "0a(03) "9a(ds) "0p

m translation invariance re ects conservation r@g = 1
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DIFFEOMORPHISMS INGFT

INVARIANCE OF GFT VERTEX AND ITS QUANTUM GEOMETRY

= (...group representation, continued...)

m the group eld variableg; encode boundary holonomies along paths connecting theraeit
each trianglé to its edges! G, is the holonomy along a loop circling the vertexof the
tetrahedron.

= symmetry under translation of each vertex saysndary connection ist !  Hamiltonian and
vector constraints, i.e. canonical counterpart of diffegohisms!  constraint on tetrahedral
wave-function constructed from the GFT eld

m Spin representation
m the vertex function takes the form of $8) 6j-symbols:
X Y Cou - Y L _Y U A ¢ -
L B MmN 1y oM Ja_ )5 e
f mg B s

m the atness constraint (WdW equation) on boundary connectiecomes algebraic (recursion)
identity for 6j-symbold

3
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DIFFEOMORPHISMS INGFT

INVARIANCE OF GFT VERTEX AND ITS QUANTUM GEOMETRY

= (...spin representation, continued...)
= act on vertex with translatiohs, with b'="dg '(g)eg(")

XY o X
I’W\ V"IW; n o dkldksdkadibj("3) =
fmg ! K
. de dech dibi("g) 12 I3 1 Js a 3 Jo Ja ki ks 2
» 1 kg ke i ki ks i ke ke i ks ka ke js e
m which implies8":
iz Js _
Ja J5 Je
- i i o2 s i1 s a iz e a ki ks 2
e ik ke ik ke ks o

m “algebraic WdW equation'on tetrahedral state
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DIFFEOMORPHISMS INGFT

GFT TRANSFORMATIONS AT SIMPLICIAL LEVEL (GFT AMPLITUDES)

) P
= we saw that discrete acti@?® (%N := & eT*eMe (for manifold ) is invariant under
Xe 70 X+ UP'S [ 6" with"§( v) = kg v(k)) *
for vectors v 2 su(2) in frame ofLy and"$( v) for same translation in frame &f
m thanks to Bianchi identity, in terms &% := TrHe~, and for functiondJg(Pe) and  &(Pe):

X
1 . -0
(k) “(UgPe+[ & Pe)ki=0; ®)
e v
m this is the GFT translation symmetry w.r.t. the non-comringaranslations

m X X for all edgese which do not touch vertex! function of remainingy, variables insu(2)

m choosing an ordering, one can lift this function to an elenoétensor produc€(SQ(3)) € v

of ny copies ofC(SQ(3))
m act with non-commutative translation
el et "i(W) SV kuk) ! “
(k¢ = parallel transport from xed vertex i, to reference vertex of fadg)
function gets transformed intoproduct of functions of y:
dTeHe 7y ! F Y et ") He( )

e e v e

suchnon-commutative translation acts on action term by mudtgion by plane wave

h ! i
dm v e W Thed g

which is trivial due to the Bianchi identity
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DIFFEOMORPHISMS INGFT

BRAIDED DIAGRAMS, ALGEBRAIC DERIVATION, N-POINT FUNCTIONS

given GFT symmetry, one would like tierive Bianchi identity as above from GFT
amplitudes in purely algebraic way

involves writing GFT amplitudes in the framework lnfaided quantum eld theorand
separate strands associated to bubbles (Bianchi id) infusI{discrete action):

requires a general rule (braiding) for crossing and swapsirands in a bubble diagram
we have been able to identify such rule only in one simple case

we expect it to exist foall spherical diagramd Bianchi identities for manifold

we expect Bianchi identity to be broken (or twisted) for moanifold diagrams

a general treatment requires a better de nitiorbadiding at GFT leve] and probably the
introduction of non trivial braiding map among GFT eldls braided statistics

trivial braiding for GFT eldsdoes nointertwine the GFT diffeomorphism symmetry
symmetry is broken at full quantum leviel GFT n-point functions araeot covariant

18/25



VERTEX FORMULATION

G FT IN VERTEX VARIAB LES (BARATIN-GIRELLI-DO, 1101.0590#iEP-TH]), (S. CARROZZA, DO, 1104.5158HiEP-TH])

m analysis of diffeos at GFT level suggests that:
m fundamental degrees of freedom of 3d colored GFT can be iassd¢o vertices
m if one wants tade ne elds in terms of representations of symmetry (quantumugrchey have
to be expressed in vertex variables, where this group atisatiy

m the step from edge to vertex variables can be made (for eld
" (01192:03) = (f%gl;hgz;hgs),andGu = 0301, Gv = 0103, Gw == G5 02):

S(uviw) = dGdGw' - (G Gwi V&g, 6,) 1 (Wes, (Ves, (W)

’ dGLdGdGw (GuG/Gw)' * (GY; Gw; Deg, (u)es, (V) es,, (W)

‘ dGudGydGw (GuGvGw) - (Gu; Gv; Gw)eg, (U)eg, (V)eg,, (W)

‘ dGudGVdGWZ d'F ~(Gu;Gv; Gw)eg,(u+ ")eg,(V+ ")eg, (W+ ")
= ’ d'Fe Bus v we )

(0701, 010s: 9302) ' (91 G2i Ga)
m triangle inR3 $ three edge vectors that clo$e three positions of vertices up to
translation

m GFT diffeo transformations now act naturally on vertex &bles
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VERTEX FORMULATION

GFTIN VERTEX VARIABLES - ACTION

m can rewrite coloreg GFT action as:

Sanl[7] = [0PVi1? = (va; V2; Vg) 2 ™ (V15 Vi V3) 5
Z
Sml] = [APVi]® ~1(v2; va; Va) ? 2(Va; Va; Vi) ? T3(Va; v Vo) ? Ta(vi; Vs Vo) + Cic
or also:
X Z
g1 = [ dG dG]K(Gi;Gi) (G1;G2;Gs) -(G1; G2 Ga)
IZ i=1 i=1
+ [ dGl]V(Glp) 2% 331 412 1824 ¢
60
Vs ~
K(Gi;G) = (G1G2G3) (G1GY) (G2Gy) (GsG3);
2 4
V(Gh) =  (GIGIG)) (G3G3G)) (GiGiG)) (GiGiG: $ e
(G3G3G)) (GIGIGY) (G3G{G))

t=3
= this corresponds to the interactions of four non-commueat? QFTs onsu(2)
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VERTEX FORMULATION

GFT IN VERTEX VAR'ABLES = AMPL'TUDES (S. CARROZZA, DO, ARX1V:1104.5158 HEP-TH])

m evaluation of Feynman amplitudes: cut-off: (G), rescaling of elds and coupling
m different combinatorial structure from usual GFT Feynmagchms
m subgraph of colot is graph of non-commutative® scalar QFT orsu(2)
m dual to triangulation of boundary of bubble around verterabr *, encoding its topology
m overall amplitude: 3 graphs encoding structure of bubbles, glued through pratpag

&0 [—

e[ s

m quantum amplitude is

7 0I 110 0 11

Y R 4 'Y Y Y
A/ [dG]% @ [ (D2 Wi i @ (Gh AA @ @ GlAA

b2B - V2 Vp 24 9 f2F - V2 f

m factorized in "bubbles plus gluing' convenient for analyzing structure of divergences
m example of result: optimal bounds proving suppression efige-manifolds:

A ()Y @R e
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BRAIDING

BRAIDING AND BRAIDED STATISTICS IN GFT -

= A. BARATIN, S. CARROZZA, F. GRELLI, DO, M. RAASAKKA , TO APPEAR

m because GFT diffeos act naturally on vertex variables etlaes also convenient for
studying the issue of braiding

m change coloring notation: - (g1;92; 93) ! ¢;c,c5(01; G2; gs) With
"6 3212349

= translations act as:

agi( ) 010203(91; 92; 93) , if G =C

TC( ). ciccs(015 92, 03) = 10005 (01 92; ) , otherwise.

m wantto nd braiding ma@B among GFT elds that intertwine GFT translations

B ( Te()=( Tc()) B withco-product: ( Te( )= Te( ) ?2Te()
m the braiding maB that satisfy this intertwining property is given by the geteule

B agal9i0i0) doo(ihing = ooa(ghg “highg ) agulaigig. ifo= dig=c
for example:

B 421(01,92:03)  12a(hihaihe) = 125(0; thads; gohog, tihe)  421(01; G2 93)

22125



BRAIDING

BRAIDING AND BRAIDED STATISTICS IN GFT -

= A. BARATIN, S. CARROZZA, F. GRELLI, DO, M. RAASAKKA , TO APPEAR

from this,one can also deduce (more complicated) braiding for élda edge variables

the above braiding is the omaturally inherited from the representation theonD&O(3)
this braiding intertwines the GFT translation/diffeo systry

m ! n-point function forbraided GFTare covariant at full quantum level
m ! eldsin GFT interaction can now be written as tensor produotany order, then related by
braiding map

one can go beyond:

m interpret each eld (in vertex variables) as a tensor proddthree representations BfSQ(3)

m nd a canonical way of writing the GFT interaction in termstehsor products of such
representations

m identify a braiding map among them that intertwines theediffymmetry and gives also the
braiding of GFT elds

stage is now set for:

m obtain Bianchi identities from invariance of GFT amplitsdender GFT diffeos in purely
algebraic language

m study Ward identities on n-point functions following fronF& diffeo invariance at quantum level

m construct Fock space for GFT states, thus for LQG spin ndsvor2nd quantization, and rewrite
dynamics in such formalism
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CONCLUSIONS

CONCLUSIONS AND OUTLOOK

Conclusions
m GFTs de ne atentative but complete quantum dynamics far apiworks or simplices
m just as LQG, they can be written three main representations: non-commutative
triad/ ux, connection, spin network
spin foam amplitudes are dual to (non-commutative) singllgravity path integrals
in this representation, construction of 4d gravity modej@smetrically transparent
one can identify th&sFT analogue of simplicial diffeomorphism transformason
this GFT symmetry makes possiblertdatenicely the consequences of diffeo invariance
in quantum geometrysimplicial vertex translations, WdW equation on cylin@fic
functions, algebraic recursion relations for spin foam Eongbes
m one also elucidates the GFT origin and roleBanchi identities
GFT diffeos are quantum group transformatioss suggest a role of braiding and braided
statistics in GFT and quantum geometry
m the appropriate braiding can be identi ed

Outlook
m clarify further algebraic nature of Bianchi identities
m role ofbraiding in GFT amplitudesdependence on topology of diagrarasaling limits
= Ward identitiesand conserved quantities following from GFT diffeo symmetr
m GFT Schwinger-Dyson equatioii@here all the quantum dynamics is contained)
u
u

Fock space of GFT states (and of LQ@formulate dynamics in 2nd quantization
extend analysis tdd gravity modelgbroken diffeos, recovering of diffeos, braiding, etc)
... and much much more.....
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CONCLUSIONS

Thank you for your attention!
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