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Introduction

Spin foam models : discretised functional integrals for TFTs
of BF type and quantum gravity

Models for theories with zero ‘cosmological constant’ are
based on the representation theory of Lie groups

Problem : generally these models diverge

Natural regularisation : consider models based on the
representation theory of quantum groups

Our work : application of this procedure to the EPRL model
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Gravity in 2 + 1 dimensions

First order gravity on a 3-dimensional manifold M:

dual co-frame e : TM → R3

SO(η) connection A (η = (±,+,+) flat metric)

Let FA = dA + 1
2 [A ∧ A] be the curvature of A, and 〈, 〉 the

Killing form on so(η) ∼= R3

Action for 2 + 1 gravity with cosmological constant Λ

SΛ =

∫
M
〈e ∧ FA〉 −

Λ

3
〈e ∧ [e ∧ e]〉 (1)

Goal : make sense of the formal quantity

Z(M) =

∫
D[e]D[A] exp iSΛ[e,A] (2)

Ponzano-Regge (PR) model : regularisation of Z(M) for
Euclidean gravity with Λ = 0
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Ponzano-Regge model [Ponzano, Regge ’68; Freidel, Louapre ’04; Barrett, Naish-Guzman ’08]

Let M be a closed, oriented triangulated 3-manifold

PR model based on Rep(SU(2)). Data consists of :

Assignments I : e 7→ I (e) ∈ Irrep(SU(2)) to the edges e of M

A state space for each triangle ∆ of M

H∆ = Hom(
⊗

e∈∂∆

I (e),C) 3 α,

An amplitude At :
⊗

∆∈∂t H∆ → C for each tetrahedron t

At(α⊗ β ⊗ γ ⊗ δ) = {6j}t

PR model : PR(M) =
∑

I

∏
e

dim I (e)
∏
t

{6j}t (3)

Problem : the above infinite sum generally diverges
[Bonzom, Smerlak ’10]
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The Turaev-Viro model [Turaev, Viro ’92]

Goal : regularise the divergencies of the PR model

Idea : the quantum group Uq(su(2)) with qr = 1 admits only
a finite number of irreducible representations [Arnaudon, Roche ’89]

→ Natural regularisation of the PR model : replace SU(2) by
its quantum deformation Uq(su(2)) at root of unity

Irreducible representations of Uq(su(2)) (after purification):

I ∈
{

0,
1

2
, 1, ...,

r − 2

2

}
, q = exp 2iπ/r

Constructing a model based on Rep(Uq(su(2))) leads to a
finite model: the Turaev-Viro invariant

TVq(M) = K
∑

I

∏
e

[dim I (e)]q
∏
t

{6jq}t (4)

Winston J. Fairbairn Quantum deformation of 4d spin foam models



Outline
Three-dimensional models

Topological models in four dimensions
Quantum gravity models in four dimensions

Gravity in 2 + 1 dimensions
The Ponzano-Regge model
The Turaev-Viro model

Relation to the cosmological constant Λ

Using the equivalence [Witten ’88] between 2 + 1 gravity and
Chern-Simons theory one can show that :

TVq(M) ∝
∫

D[e]D[A] exp iSΛ[e,A], if q = exp ilp/lc (5)

Asymptotics of the quantum 6j symbol when I (e)→∞ :
[Mizoguchi,Tada ’92]

{6jq}t ∼
1√

12πVt
cos
(

St +
π

4

)
, Vt = volume(t), (6)

where St is the Regge action with cosmological constant Λ for
the tetrahedron t

St =
∑
e∈∂t

θe l(e)− 1

l2
c

Vt (7)
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4d BF theory [Horowitz ’89; Cattaneo, Cotta-Ramusino, Fröhlich, Martellini ’95; Baez ’95]

BF theory with semi-simple Lie group G on a 4-manifold M:

B field B ∈ Ω2(M)⊗ g
connection A on a principal G -bundle over M

Let FA = dA + 1
2 [A ∧ A] be the curvature of A, and 〈, 〉 the

Killing form on g

Action of 4d BF theory with cosmological constant Λ

SΛ =

∫
M
〈B ∧ FA〉 −

Λ

12
〈B ∧ B〉 (8)

Goal : make sense of the formal quantity

Z(M) =

∫
D[B]D[A] exp iSΛ[B,A] (9)
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The Ooguri model [Ooguri ’92]

Ooguri model : regularisation of Z(M) in the case of
G = SU(2) and Λ = 0

Model based on Rep(SU(2))

The assignments are now to the triangles ∆ and tetrahedra t
of a triangulation of M

I : ∆ 7→ I (∆) ∈ Irrep(SU(2)), t 7→ αt ∈ Ht = Hom(
⊗

∆∈∂t

I (∆),C)

The amplitude for the 4-simplexes σ are given by 15j-symbols

Partition function :

O(M) =
∑
I ,J

∏
∆

dim I (∆)
∏
t

dim J(t)−1
∏
σ

{15j}σ (10)

Winston J. Fairbairn Quantum deformation of 4d spin foam models



Outline
Three-dimensional models

Topological models in four dimensions
Quantum gravity models in four dimensions

BF theory
The Ooguri model
The Crane-Yetter model

The Crane-Yetter model [Crane,Yetter, Kauffman ’93]

The Ooguri model diverges in general

It can be regularised by considering a model based on
Rep(Uq(su(2))) with qr = 1

CYq(M) = K
∑
I ,J

∏
∆

[dim I (∆)]q
∏
t

[dim J(t)]−1
q

∏
σ

{15jq}σ (11)

The Crane-Yetter model is finite and provides an invariant of
topological 4-manifolds

It is related to SU(2) BF theory on M with cosmological
constant Λ via Chern-Simons theory on ∂M [Roberts ’93; Baez ’95]

CYq(M) ∝
∫

D[B]D[A] exp iSΛ[B,A], if q = exp il2
p/l2

c (12)
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Gravity as a constrained BF theory [Plebanski ’77; Freidel, De Pietri ’98]

First order gravity on a 4-dimensional manifold M:

- dual co-frame e : TM → R4

- SO(η) connection A (η = (ε,+,+,+), ε = ±1, flat metric)

Action for 3 + 1 gravity with cosmological constant Λ

SΛ =

∫
M
〈 ∗(e ∧ e) ∧ FA〉 −

Λ

12
〈∗(e ∧ e) ∧ e ∧ e〉 (13)

Suggests that GR could be cast as a BF theory :

SΛ =

∫
M
〈B[e]∧FA〉−

εΛ

12
〈B[e]∧∗B[e]〉, with B[e] = ∗(e∧e)

Gravity ≡ BF theory + constraints on the B field

SPlebanski
Λ =

∫
M
〈B ∧ FA〉 −

εΛ

12
〈B ∧ ∗B〉+ C(B) (14)
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The EPRL/FK models [Engle, Pereira, Rovelli, Livine ’08; Freidel, Krasnov ’08]

EPRL/FK models : spin foam models for Plebanski’s theory
with Λ = 0 and Immirzi parameter γ

Idea : implement the Plebanski constraints as a choice of
measure in the path integral for BF theory

Concretely :

Consider a generalised Ooguri model for Rep(SO(η))
Impose constraints on the data of the model, i.e., at the level
of representation labels I (∆) and state spaces Ht

Questions :

Are the EPRL/FK models finite ? [Perini, Rovelli, Speziale ’09]

How to introduce a cosmological constant ?
[Bianchi, Krajewski, Rovelli, Vidotto ’11]

Possible answer : consider the quantum deformation of the
models [Smolin ’95; Major, Smolin ’96; Smolin ’02; Rovelli ’10]

Winston J. Fairbairn Quantum deformation of 4d spin foam models



Outline
Three-dimensional models

Topological models in four dimensions
Quantum gravity models in four dimensions

Gravity as a constrained topological theory
The EPRL/FK models
Quantum deformation of the EPRL model

Quantum deformation of the EPRL model

Our work : construction and analysis of a q-deformation of
the Euclidean and Lorentzian versions of the EPRL model

The Euclidean model is based on

Uq(spin(4)) = Uq(su(2))⊗ Uq(su(2)), with q root of unity

The Lorentzian model on

Uq(sl(2,C)) = DUq(su(2)) = Uq(su(2))⊗̂Fq(SU(2))op, with q real

Basic ingredients for the construction of the model :

1 A given subset of representations I ⊂ Rep(Uq(so(η)))
(q-analogue of EPRL representations)

2 A specific class of intertwiners ι between the elements of I
(q-analogue of EPRL intertwiners)

From here on, we will focus on the Lorentzian model
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q-Lorentzian EPRL representations

Unitary, irreducible representations (of the principal series) of
Uq(sl(2,C)), q = e−κ [Pusz ’93, Buffenoir, Roche ’99] :

Irrep(Uq(sl(2,C))) = {(n, p), n ∈ Z/2, p ∈ [0, 4π/κ[ } (15)

Let γ ∈ R be a parameter. An EPRL representation is a map

φγ : Irrep(Uq(su(2))→ Irrep(Uq(sl(2,C))),

defined by
K 7→ (n(K ), p(K )) = (K , γK ) (16)

Remark: the pre-image of the map φγ is restricted to

L = {K ∈ N/2 | K < 4π/γκ} ⊂ Irrep(Uq(su(2)))
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q-Lorentzian EPRL interwiner : Definition I.

Notation : principal representations (πα,Vα), α = (n, p)

The EPRL representation α(K ) factorises as

Vα(K) =
∞⊕

I=K

VI , VI : Uq(su(2))-module (17)

Let f K
α : Vα → VK be the projection on the lowest weight

factor. The dual map induces an embedding

f ∗ : HomUq(su(2))(⊗n
i=1VKi

,C)→ HomUq(sl(2,C))(⊗n
i=1Vαi ,C)

To all Uq(su(2))-intertwiner ΛK : ⊗n
i=1VKi

→ C, this map
associates a quantum EPRL intertwiner ια(K)

ια(K) = f ∗(ΛK ) = ΛK ◦
n⊗

i=1

f Ki
αi
◦ Tα1,...,αn (18)
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q-Lorentzian EPRL interwiner : Definition II.

Tα1,...,αn is the q-analogue of the classical expression∫
SL(2,C)

dX

(
n⊗

i=1

παi

)
(X ) (19)

Let h : Fq(SL(2,C))→ C be a Haar measure on the Hopf
algebra Fq(SL(2,C)) dual to Uq(sl(2,C)) [Buffenoir, Roche ’99]

Ex. : f ∈ F (SL(2,C)), h(f ) =

∫
SL(2,C)

dX f (X )

Tα1,...,αn is defined as [Noui, Roche ’02]

Tα1,...,αn =
∑
A

(
n⊗

i=1

παi

)
(∆(n)(xA)) h(xA), (20)

where {xA}A is a basis of Uq(sl(2,C)) and {xA}A is the dual
basis of Fq(SL(2,C))
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q-Lorentzian EPRL interwiner : Properties

Theorem. 1. Let {e I
a(α) | I ∈ N, I ≥ |n|, a = −I , ..., I} be a

basis of Vα. The evaluation of the 4-valent quantum EPRL
intertwiner ια(

⊗4
i=1 e Ii

ai
(αi )) is a multiple series which

converges absolutely
2. The linear map ια : ⊗4

i=1Vαi → C is a intertwiner for the
quantum Lorentz group

Proposition. Let R be the matrix of the quantum double
DUq(su(2)) and cα2,α1 : Vα2 ⊗ Vα1 → Vα1 ⊗ Vα2 with

cα2,α1 = τα2,α1 ◦ (πα2 ⊗ πα1)(R), (21)

the associated braiding. The quantum EPRL intertwiner ια is
not invariant under the action of c :

ια1α2α3α4 ◦ cα2,α1 6= ια2α1α3α4 (22)
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Graphical calculus : ingredients

4-simplex amplitude defined using graphical calculus
Elements for the diagrammatic calculus :

EPRL tensors : elements of
[⊗4

i=1 Vαi

]
⊗ Fq(SL(2,C))

Ψα =

[∑
A

(
4⊗

i=1

παi(Ki )

(
∆(4)(xA)

))
◦

4⊗
i=1

f αi

Ki
◦ ΛK

]
⊗ xA :=

where ΛK ∈ HomUq(su(2))

(
C,
⊗4

i=1 VKi

)
and f αK : VK → Vα

An invariant bilinear form β : Vα × Vα → C

β :=

The braiding cα,β : Vα ⊗ Vβ → Vβ ⊗ Vα

cα,β :=

Winston J. Fairbairn Quantum deformation of 4d spin foam models



Outline
Three-dimensional models

Topological models in four dimensions
Quantum gravity models in four dimensions

Gravity as a constrained topological theory
The EPRL/FK models
Quantum deformation of the EPRL model

Graphical calculus : evaluation

Closed diagram Γn with n vertices → φ(Γn) ∈ Fq(SL(2,C))⊗n

The evaluation of a closed diagram is defined as

ev(Γn) = (ε⊗ hn−1)(φ(Γn)), ε is the co-unit (23)

The diagram for the 4-simplex amplitude is given by

Γ5 =
0

1
23 4

01

01

0303

02

02

23

23

1212

24
24

14
14

04
04

1313

34
34

(24)

Theorem. The multiple series ev(Γ5) converges absolutely
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The model

Let M be a closed, oriented triangulated 4-manifold

Model based on Rep(Uq(sl(2,C))). Data consists of :

An assignment α : ∆ 7→ α(∆) ∈ Irrep(Uq(sl(2,C))) of an
EPRL representation to each triangle ∆ of M

A state space of EPRL tensors for each tetrahedron t of M

Ht =

(⊗
∆∈∂t

α(∆)

)
⊗ Fq(SL(2,C))

An amplitude Aσ :
⊗

t∈∂σ Ht → C for each 4-simplex σ

Aσ(Ψ1 ⊗ ...⊗Ψ5) = ev(Γ5) ∈ C

The resulting model is finite. It is given by

Zq(M) =
∑
K∈L

∑
J

∏
∆

[dim K (∆)]q
∏
σ

Aσ({K (∆)}, {J(t)}) (25)

Winston J. Fairbairn Quantum deformation of 4d spin foam models



Outline
Three-dimensional models

Topological models in four dimensions
Quantum gravity models in four dimensions

Gravity as a constrained topological theory
The EPRL/FK models
Quantum deformation of the EPRL model

Conclusion

We have constructed and analysed a q-deformation of the
EPRL model. We have :

Generalised the classical constructions to models based on
Uq(su(2))⊗ Uq(su(2)) and DUq(su(2))

Defined the EPRL intertwiner, studied its convergence and
properties under braiding

Constructed a convergent amplitude for the 4-simplexes

Open question: relation to the cosmological constant Λ ?

If q = e−l2
p/l

2
c (Lorentzian), bound on the area of the triangles

A(∆) < 32π2l2
c (lp << lc) (26)

Need for an asymptotic formula [Ding, Han ’11]
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