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Introduction

• What are the observables in a theory of quantum gravity?

• How can we construct these observables?

• tremendously difficult: Dirac observables have to include an
infinite number of spatial derivatives (Torre 93)

• resort: approximation? (Gambini,Pullin 00)

• can also be used to address conceptual issues:

• Can we approximate the (local) observables of standard field
theory?
Will these observables have a local Poisson algebra?

• suggest an expansion around a fixed background/phase space
point

• deviations from standard field observables could result in
fundamental uncertainties for quantum gravity observables
(Giddings, Marolf, Hartle 05).

• How does the choice of time/clocks influence the interpretation?



Overview

1. Approximate Dirac observables

2. Application to General Relativity

3. Interpretation in terms of propagators and interaction processes

4. Scalar field coupled to gravity

5. Commutator algebra of fields: How does the choice of clock
variables matter?

6. Outlook and summary



Fluctuation variables

• X0 “background” phase space point on constraint hypersurface

• introduce fluctuations x = X − X0 around background;
consider xa as first order quantities

• notation: for a phase space function g

(m)g all terms of order m in g
[m]g all terms of order ≤ m in g
(m+)g all terms of order > m in g

• expand (first class) constraints Cj =
∑

m=1

(m)Cj , start with first

order



Approximate Dirac observables

F Dirac observable ⇒ {F , Cj} ' 0 for all constraints Cj

truncate F to terms up to the m-th order
⇒ {[m]F , Cj} = {F , Cj} − {(m+)F , Cj} ' O(m)

Definition

An approximate Dirac observable of m-th order commutes with the
constraints up to terms of order m.

• concept is generalizable to perturbation in parameters or
perturbations around (solvable) sectors of the theory

• first order Dirac observables coincide with observables of
linearized theory



How to compute approximate Dirac observables?

Problem: higher order constraints [m]Cj do not form an algebra;
cannot find invariants under [m]Cj

Here: • use formalism of partial and complete observables (Rovelli 02, BD
04)

• in particular the series expansion for complete observables (BD 04)
• truncate this series to terms of order ≤ m
• series restricts to finitely many terms and is a Dirac observable of

m-th order
• moreover complete observables have a (dynamical) interpretation



Complete Observables

Complete observables can be understood as gauge invariant extensions:

Choose a (parameter dependend) gauge T K = τK .

Complete Observable F[

f ; T ]
(τ ) associated to a phase space function f :

• restricts to f on the gauge surface: F[

f ; T ]
(τ )∣

∣{T M = τM}
' f

• is constant along the gauge orbits: {F[

f ; T ]
(τ ) , Cj } ' 0

• interpretation: gives the value of f at the moment at which T M = τM . The
T M are called clock variables.



Power Series for Complete Observables

To compute complete observables introduce a new basis of the constraints:

C̃K = Cj (A−1)j
K with AK

j = {T K , Cj}

⇒ C̃M acts as derivatives in T K –diretion: {T K , C̃M} ' {T K , Cj}(A−1)j
M = δK

M

⇒ {C̃K} ‘weakly Abelian’ i.e. {C̃K , C̃M} = O(C2)

Taylor expansion of the complete observable away from gauge surface:

F[

f ; T ]
(τ ) '

∞
∑

r=0

1
r !

{· · · { f , C̃K1}, · · · }C̃Kr} (τK1 − T K1) · · · (τKr − T Kr )

satisfies
F[

f ; T ]
(τ )∣

∣{T M = τM}
' f and {F[

f ; T ]
(τ ) , C̃K } ' 0

Power series in (τK − T K ) ⇒ for τK = T K (X0) ⇒ power series in fluctuations



Approximate complete observables

Choose τK = T K (X0) ⇒ (τK − T K ) at least first order

For f first order

[m]F[

f ; T ]
(τ) '

m
∑

r=0

1
r !

{· · · { f , [m]C̃K1}, · · · }
[m−r+1]C̃Kr } (τK1 − T K1) · · · (τKr − T Kr )

Only finitely many terms!

Convergence for m → ∞ will depend on “quality” of clock variables.

If there exist a “perfect” set of clock variables, then:
There exists an exact Dirac observable that coincides with the approximate
complete observable of order m (with respect to another set of clock variables)
modulo terms of order (m + 1).



Application to General Relativity

(complex) connection variables: Aa
j = Γa

j + βKa
j , Eb

k where β = i/2

{Aa
j(σ), Eb

k (σ′)} = κδa
bδj

kδ(σ, σ′)

Minkowski background X0 = (Aa
j = 0, Eb

k = β−1δb
k )

fluctuation variables aa
b := Aa

jEb
j ec

d = (Ec
k − Ec

k )Ek
d

first order of the constraints

(1)Gb = κ−1(∂a
(LT+LL)ea

b + βεbcd
(LT+TL+AT)adc) Gauß

(1)Va = κ−1(∂a
T ab

b − ∂c
TLaa

c) vector
(1)C = κ−1(2βεabd ∂a

AT abd ) scalar

LL left and right long. mode

T transv. trace part mode

AT antisym. transv. mode

LT left long. right transv. modes

TL left transv. right long. modes

STT symm. transv. trace–free modes



ADM clock variables

For every constraint Cj(σ) we have to choose a clock variable T K (σ′).

Convenient: (0)AK
j (σ, σ′) := (0){T K (σ), Cj (σ

′)} = δK
j δ(σ, σ′)

In ADM variables (ADM 62): vector: (LT + TL), LL mode of the 3–metric

scalar: T mode of the momentum
In connection variables:

GT a = β−1εa
bc

LT ebc − ∆−1(∂a LLab
b + 1

2∂a T ab
b)

V T a = ∆−1(−∂b
LT eba − ∂b

TLeab + 1
2∂a T eb

b) −
1
2∂a LLeb

b)

CT = (4β)−1∆−1(εcab∂c AT eab + β(T ab
b + 2 LLab

b))

satisfy {T K (σ) , (1)Cj(σ
′)} = δK

j δ(σ, σ′)

Interpratation: Metric is in a coordinate system which is as near to the Cartesian
one as possible (Kuchař 1970). First order lapse and shift functions vanish on
gauge and constraint surface.



The new constraints

Can invert the matrix AK
j (σ, σ′) perturbatively to obtain the constraints C̃K , e.g.

(1)(A−1)j
K (σ, σ′) = −δj

L
(1)AL

k (σ, σ′)δk
K

Furthermore: can iteratively add to the C̃K terms which are at least O(C2),
such that the resulting constraints ČK are of the (deparametrized) form

ČK = (1)Cj + (2+)Ȟj(STT , T L)

• Both sets of constraints can be used in the series expansion for the
complete observables. The deparametrized form is easier to deal with.

• Only finitely many operations necessary to calculate complete observable
of order m for parameter values τK (σ) ≡ 0.

• Can we introduce dynamics? What happens if we change the parameter
values τK ?



Asymptotic conditions

In computing the complete observable terms of the following form appear:
∫

Σ

{ · , (1)Cj(σ) + . . .} δj
K (τK (σ) − T K (σ)) dσ

⇒ τK (σ) and T K (σ) can be understood as smearing functions for the constraints.

Have to specify asymptotic conditions (Thiemann 95):

aab ∼ r−2 and odd parity in leading order
eab ∼ r−1 and even parity in leading order

The clock variables T K have the correct asymptotic behaviour to be allowed as
smearing functions for the constraints (without introducing boundary terms).

Choosing τ0(σ) ≡ t corresponds to choosing constant lapse: have to add a
boundary term to the scalar constraint. This boundary term is equal to the ADM
energy and leads to the vanishing of the first order for the integrated scalar
constraint.

ADM energy ' (2+)C :=
∫

Σ
(2+)C dσ '

∫

Σ
Ȟ0(σ) dσ =: Ȟ0



Dynamics

Set τ0(σ) ≡ t and τA(σ) ≡ 0 for A 6= 0 in F[

f ; T ]
(τK ).

Can rewrite the series expansion in two ways:

(a) F[

f ; T ]
(t) ' F"

αt
Ȟ0

(f ) ; T
#(τK ≡ 0) with αt

Ȟ0
(f ) =

∑

r=0

t r

r !
{f , Ȟ0[1]}r

(b) F[

f ; T ]
(t) ' αt

Ȟ0
( F[

f ; T ]
(τK ≡ 0) )

(a) easier to calculate with:
first evolve f with Ȟ0, then calculate complete observable (gauge invariant
extension);
can restrict Ȟ0(STT , T K ) to STT modes!
⇒ interpretation in terms of scattering of gravitons

(b) first calculate complete observable, then evolve with the ADM–Hamiltonian
Ȟ0 ' (2+)C
⇒ our time evolution is generated by the ADM–Hamiltonian

and corresponds to time translations at infinity



The second order approximation

(1) evolve (1)f with Ȟ0(STT , T K ≡ 0) up to second order

(2) calculate complete observable (gauge invariant extension) up to second
order;

(1) Because (1)Ȟ0 = 0 we can define the “free” propagator

αt := αt
(2)Ȟ0

.

The second order time evolution can be written as

[2]αt
Ȟ(f ) = αt (f ) +

∫ t

0
dt ′ αt′

(

{

α(t−t′)(f ) , (3)Ȟ
}

)

.

⇒ field f propagates → interaction process → resulting fields propagate
generalizes to higher order

(2) Calculate gauge invariant extension; for the second order term it is sufficient
to calculate the first order complete observables of the two fields involved.

Complete observable of order m associated to f and (t , σ) can be explicitely
calculated.



The time generator

(2)Ȟ0|STT = (2)C|STT

⇒ free propagator coincides with propagator in linerized theory/
matter fields on Minkowski

(3)Ȟ0|STT = (3)C|STT

⇒ “scattering” of gravitons or matter fields at gravitons or matter

(4)Ȟ0|STT 6= (4)C|STT

will include terms with inverse derivative operator ∆−1

⇒ non-local choice of time/ clock variables

Ȟ0 is not of finite order anymore (as opposed to C)



Gravity coupled to a scalar field

• complete observables associated to matter field can be
understood as expansions in κ1/2

• first order complete observable (1)F[φ(σ);T K ](t) = φ(t , σ) coincides
with observable of field theory on Minkowski space

• second order complete observable includes (one) scattering
between matter field and gravitons: to lowest order propagation
of matter field on graviton background

• justifies (up to second order) to work with an effective matter
Hamiltonian, where gravitational variables are time dependent
but non–dynamical

• Poisson brackets between second order matter fields reflect to
lowest order the causality structure of the graviton background

• higher order terms include backreaction but also non–local
expressions

• higher order Poisson brackets will be difficult to interprete
because of non–local terms



The second order complete observable

F[

φ(σ); T ]
(t) '

∫

Σ

S(t , σ; 0, σ′)π(σ′) + S′(t , σ; 0, σ′)φ(σ′) dσ′ −

∫

Σ

S(t , σ; 0, σ′)∂b(π
V T b)(σ′) + S′(t , σ; 0, σ′) (∂bφ)(σ′) V T b(σ′) dσ′−

∫

Σ

S(t , σ; 0, σ′)(∂a(∂
aφ CT )(σ′) − m2φ(σ′) CT (σ′))+

S′(t , σ; 0, σ′)π(σ′) CT (σ′) dσ′ +
∫ t

0
dt ′

∫

Σ

dσ′ 2S(t − t ′, σ; 0, σ′)×

∫

Σ

G′ab
cd (t ′, σ′; 0, σ′′) STT acd (σ′′) + G′′ab

cd (t ′, σ′; 0, σ′′) STT ecd (σ′′) dσ′′ ×

∂σ′

a ∂σ′

b

∫

Σ

S(t ′, σ′; 0, σ′′′)π(σ′′′) + S′(t ′, σ′; 0, σ′′′)φ(σ′′′) dσ′′′



Influence of the clock variables

How does the choice of clock variables matter?
Consider influence on the “space–time algebra”: commutators
between fields at different space–time points.

(A) Choose scalar fields as clock variables:

• expect local behaviour of space–time commutators

• commutator has a correction term ∼ energy of the field
observed/energy of the clock field

• energy of the clock field cannot be made arbitrary large because
of back reaction/ black hole formation

• fundamental restriction on observables? (Giddings,Marolf,Hartle 05)

(B) Choose ADM clocks:

• correction term for the commutator scales in the same way as
backreaction terms

• κ → 0 gives the commutators of field theory on flat background

• however non–local behaviour for third order expected



Outlook and Summary

• approximate Dirac observables with a dynamical interpretation
can be calculated explicitely to an arbitrary order

• precise understanding of linearized theory and (quantum) field
theory on a fixed background as approximations to full general
relativity

• formalism can be used to address construction and interpretation
of Dirac observables

• can be generalized to expansion around symmetry
reduced/cosmological sectors ⇒ use knowledge on
symmetry reduced sectors to construct approximate Dirac
observables for full theory

• would also include closed universes ⇒ address conceptual
issues for QFT on curved space–time from a new perspective

• need a better understanding of the (quantum) interpretation of
complete observables, in particular role of clock variables


