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Outline:

◮ Barrett-Crane model: behaviour, positivity, q-deformed version

◮ 10j symbol: asymptotics, graviton propagator

◮ Numerical comparison of new vertex proposals

◮ Lattice gauge theory using spin foam methods
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The Riemannian Barrett-Crane model

Let ∆ be a triangulation of a closed 4-manifold. F = dual faces =
triangles, E = dual edges = tets, V = dual vertices = 4-simplices.

A spin foam F is an assignment of a spin jf to each dual face f ∈ F .

The amplitude of F is

A(F ) :=
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∏
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∏

e∈E

Ae

)(

∏

v∈V

Av

)

, (1)

where

Av =

•HHHHH•vvvvv

•
))

))
))

•

•��������
��
��
��
��

HH
HH

HH
HH

HH vvvvvvvvvv

))))))))))
= 10j symbol (2)

and Ae and Af are normalization factors that depend on the version
of the Barrett-Crane model chosen.
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Early computations gr-qc/0202017, Baez-C-Halford-Tsang

Take ∆ to be the simplest triangulation of the 4-sphere, as the
boundary of the 5-simplex.

Using the Metropolis algorithm, we computed the expectation value
of the average area of a triangle:

〈O〉 =

∑

F

O(F )A(F )

∑

F

A(F )
where O(F ) =

1

|F|

∑

f ∈F

√

jf (jf + 1)

The results showed very strong dependence on the normalization
factors Ae and Af :

◮ For the Perez-Rovelli model, spin zero dominance.

◮ For the De Pietri-Freidel-Krasnov-Rovelli model, divergence.
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Positivity gr-qc/0110044, Baez-C

It was only after doing the above computations that it dawned
on us that the amplitudes we were computing were always
positive real numbers!

At first we suspected an error, but eventually we proved
mathematically that this is correct.

From a computational point of view, this was good news,
because it meant that there was no sign problem in the
Metropolis algorithm.

But conceptually it raised lots of questions as it meant that
there was no interference in the path integral. This highlighted
the interpretation of the path integral as a projection onto
physical states.
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q-deformed version arXiv:0704.0278, CQG, C-Khavkine

The q-deformed Barrett-Crane model replaces the group SU(2) by
the quantum group SUq(2). When q = exp(iπ/r) is a root of unity,
this regularizes the theory by eliminating spins greater than (r − 2)/2.
As r → ∞, q → 1, the undeformed value.

Also, it has been suggested by Smolin that r is related to the
cosmological constant:

Λ ∼ 1/r .

We have recently done computations of expectation values which
greatly generalize earlier work:

◮ The deformation parameter q can be varied.

◮ The triangulation can be varied, and can be large.

◮ Several different observables have been used.
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q-deformed spin network evaluations arXiv:0704.0278, C-Khavkine

The first step was generalizing the spinnet library to handle SUq(2). It

can now handle:

◮ q = 1 (classical case)

◮ q = m/n an exact
rational number

◮ q a floating point real
number

◮ q = exp(iπ/r) a root of
unity

◮ q a floating point
complex number

◮ symbolic q

The plot shows the real part of the tet network, with all spins equal to 2.
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Observables arXiv:0704.0278, C-Khavkine

Spin foam observables depend on face spin labels:

average spin J(F ) =
1

|F|

∑

f ∈F

⌊jf ⌉ , (3)

spin variance (δJ)2(F ) =
1

|F|

∑

f ∈F

(⌊jf ⌉ − 〈J〉)2 , (4)

average area A(F ) =
1

|F|

∑

f ∈F

√

⌊jf ⌉ ⌊jf + 1⌉, (5)

spin-spin corr. Cd(F ) =
1

Nd

∑

dist(f ,f ′)=d

⌊jf ⌉ ⌊jf ′⌉ − 〈J〉2

〈(δJ)2〉
. (6)

Quantum half integers ⌊j⌉ = j when q = 1, but ⌊j⌉ ∼ sin(2jπ/r )
when q = e iπ/r .
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Expectation values arXiv:0704.0278, CQG, C-Khavkine
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Spin Correlation arXiv:0704.0278, C-Khavkine
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Asymptotics gr-qc/9809032, Barrett-Williams

Since the 10j symbol is the key ingredient of the Barrett-Crane
model, it has been well studied. It can be computed as an integral:

{10j} = ±

∫

S3

∫

S3

∫

S3

∫

S3

∫

S3

∏

1≤k<l≤5

Kjkl (φkl ) dx1 · · · dx5, (7)

where φkl is the angle between the unit vectors xk and xl , and

Kj(φ) :=
sin((2j + 1)φ)

sin(φ)
. (8)

The spins jkl label the triangles of a 4-simplex, giving them each area
2jkl + 1. The xk can be thought of as normals to the 5 tetrahedra.

Barrett and Williams studied this integral for large spins. They
showed that the stationary phase points correspond to 4-simplices
with the prescribed triangle areas (up to scale) and that these points
contribute according to the Regge action.
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Degenerate points gr-qc/0208010, Baez-C-Egan; Barrett-Steele; Freidel-Louapre

As the spins are scaled by a factor λ, the contribution from the
stationary phase points goes like λ−9/2.

We performed computations to verify that the 10j symbol behaved
asymptotically like the Regge action, and found that this was false.
We observed that the 10j symbol goes like λ−2, with no oscillation.

Further analytic study (by several independent groups) showed that
this is due to contributions from degenerate 4-simplices, i.e. flat
4-simplices with zero volume. These were noticed but not studied by
Barrett and Williams.

This has lead to new proposals for the vertex amplitude in quantum
gravity.
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Asymptotics gr-qc/0208010, Baez-C-Egan
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The points show the numerical evaluation of six different 10j symbols
as the scale factor λ (x-axis) is varied. The lines show the
asymptotic predictions using degenerate points.
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Graviton Propagator Rovelli, Bianchi, Modesto, Speziale, Livine, Willis, C, . . .

Rovelli and others proposed a way to define 2-point functions in the
Barrett-Crane model. The leading contribution is of the form

Wab =

∑

{jk}

h(ja) h(jb)Ψ[j] {10j}

∑

{jk}

Ψ[j] {10j}
, h(j) = j(j + 1) − j0(j0 + 1)

The sum is over ten spins labelling the triangles of a 4-simplex.
h(ja)h(jb) is the field insertion. Ψ is a chosen boundary state.
{10j} denotes the 10j symbol.
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Graviton Propagator Rovelli, Bianchi, Modesto, Speziale, Livine, Willis, C, . . .

More concisely:

Wab =
1

N

∑

{jk}

h(ja) h(jb)Ψ[j] {10j}, h(j) = j(j + 1) − j0(j0 + 1)

Rovelli and Speziale proposed a Gaussian boundary state:

Ψ[j] = exp

(

−
1

2j0

∑

i ,k

αik(ji − j0)(jk − j0) + iΦ
∑

k

jk

)

(9)

peaked around a regular 4-simplex, where αik is a 10x10 matrix of
real numbers. Here j0 determines the areas of the triangles of the
regular 4-simplex, and Φ = arccos(−1/4) is the dihedral angle.

For large j0, Wab is expected to go as 1/j0, and Rovelli argued that
this is indeed the case.

In numerical computations it was difficult to see this behaviour
because the computations were too difficult.
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Computations for diagonal αik arXiv:0710.0617, C-Livine-Speziale

If we restrict to αik = αδik , a diagonal matrix, then the boundary
state factors:

Ψ[j] = exp

(

−
α

2j0

∑

k

(jk − j0)
2 + iΦ

∑

k

jk

)

=
∏

k

exp

(

−
α

2j0
(jk − j0)

2 + iΦjk

)

(10)

As mentioned earlier, the 10j symbol can be expressed as an integral
whose integrand is a product of kernels, one for each k.

Thus if we exchange the order of summation and integration, the ten
nested summations become a product of ten independent
summations.

This allows us to compute the propagator for diagonal α:
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Computations for diagonal αik arXiv:0710.0617, C-Livine-Speziale

100 101 102

10-3

10-2

10-1

srabrorreσ15=α
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New vertex proposals Engle-Pereira-Rovelli, Livine-Speziale, Freidel-Krasnov

Motivated by problems found with the Barrett-Crane vertex, new
vertex amplitudes have been proposed:

◮ Engle, Pereira & Rovelli
(2007, arXiv:0705.2388, arXiv:0708.1236)

◮ Livine & Speziale
(2007, arXiv:0708.1915)

◮ Freidel & Krasnov
(2007, arXiv:0708.1595)

Briefly, the idea is to impose constraints weakly in the quantum
theory.
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Comparison of labellings Khavkine

Barrett-Crane:

Spins jf labelling the triangles. 10j per vertex.

Engle-Pereira-Rovelli, Livine-Speziale:

In addition, intertwiners ie labelling the tetrahedra. 10j + 5i per
vertex.

Freidel-Krasnov:

In addition, intertwiners ke,f for each choice of triangle and
tetrahedron containing that triangle. 10j + 5i + 20k per vertex.

Goal: compare these models by computing expectation values of
observables.

First step: compare the vertex amplitudes.
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Results Khavkine
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Lattice Gauge Theory Conrady, Oeckl, Pfeiffer, . . .

Many people have observed that spin foam methods can be used to
provide a dual formulation of pure Yang-Mills lattice gauge theory.

This is an exact duality. It replaces integrations over group variables
labelling edges with summations over representation variables
labelling edges and plaquettes (faces).

The terms in the summation involve evaluating complicated spin
networks.

Why dualize?

◮ Gives a gauge-invariant picture.

◮ May be computationally faster in some contexts.

◮ Bridge to quantum gravity with matter.

◮ May help with hard problems in LGT, e.g. dynamical fermions.
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Duality transformation

Conventional lattice gauge theory:

Z =

∫

∏

p∈P

e−S(gp)
∏

e∈E

dge (11)

where gp is the product of the group elements labelling the edges of
the plaquette p. If you expand the action in terms of characters

e−S(g) =
∑

j

cjχj(g) (12)

and exchange the order of integration and summation, then

Z =

∫

∏

p∈P

∑

jp

cjpχjp(gp)
∏

e∈E

dge =
∑

{jp}

∫

∏

p∈P

cjpχjp(gp)
∏

e∈E

dge
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Spin foam formulation

Specializing to the case of D = 3 and G = SU(2), we can factor the
characters into contributions from each ge and find

Z =
∑

{jp}

∑

{ie}

∏

v∈V

18jv (iv , jv )
∏

e∈E

Ne(ie , je)
−1





∏

p∈P

e
− 2

β
jp(jp+1)

(2jp + 1)



 .

Here 18jv (iv , jv ) is the 18j symbol:
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Fast 18j symbol algorithm
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−y−z

+x−y −x+y

−x−z

−x+z−y+z

−x−y

−y −x

+y−z+x−z

+z

+x+z

+x+y

−z

[

i+x j+x+z i+z

j+y+z i+y j+x+y

]

θ(i+x, i+y, i+z)

[

i+z j
−y+z i

−y

j
−x−y i

−x j
−x+z

]

θ(i+z , i−x, i
−y)

×

[

i+x j+x−z i
−z

j
−y−z i

−y j+x−y

]

θ(i+x, i
−y, i−z)

[

i+y j
−x+y i

−x

j
−x−z i

−z j+y−z

]

θ(i+y,i−z, i−x)

+x +y

−z

+z

+x+y

+x−z−y−z −x−z

−y+z

−x−y

+y−z

−x−y +y+z+x+z

−x+y+x−y

−x+z

Vertex Splitting

Redrawing in plane

Collapse Triangles
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Computations arXiv:0705.2629 v2, Phys. Rev. D, Cherrington-C-Khavkine
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Pure SU(2) Yang-Mills on 83 lattice
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Current and future LGT work Cherrington

◮ D = 4

◮ Higher gauge groups, such as SU(3)

◮ Wilson loop observables

◮ Dynamical fermions

◮ Gauge theory coupled to quantum gravity

(Oriti, Pfeiffer, Speziale, . . . )
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Wilson loop observables Cherrington, in prep

Confinement 2 point correlation function
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Dynamical fermions arXiv:0710.0323, Nucl. Phys. B, Cherrington

Cycle DimerMonomer

D=2, G=U(1) D=3, G=SU(2)
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Conclusions
◮ Computation has repeatedly lead to new and often unexpected

insights.

◮ These facts are often then derived analytically.

◮ The results of computation can help choose between existing
models and can suggest new models.

◮ Computational techniques from one area (e.g. spin foams and
spin networks) can be effective in another area (e.g. lattice
gauge theory).
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